Introducing the Sounds of Glitches

Hello Gravity Spiers!

At long last and after much demand, we have added audio examples of what the Gravity Spy glitches sound like to our field guide! As many of you may know, the frequencies of gravitational waves (and frequencies of glitches) detectable by LIGO are similar to the frequencies of sound (i.e. the pitches) that humans can hear. Therefore, LIGO scientists oftentimes convert our signals to sound!* The MP3s are embedded directly into the field guide, so you should be able to play them straight from there.

Some glitch categories may be hard to distinguish above the background noise, whereas others you should hear quite distinctly. Either way, having a good set of headphones will help hear the subtle features of the glitches better.

Big thanks to our LIGO collaborator Derek Davis for putting together these glitch sounds! Head on over to the Gravity Spy field guide to take a listen to the sounds of glitches!

-Mike / the GSpy team

 

 

*There are a few changes done to the data that make the sounds easier to hear. Other than the standard whitening and band-passing, for the glitches in our field guide we also linearly shift the frequency up by 60Hz to make the sounds (especially the low frequency glitches) more in our audible range. Also, a filter that can be described as an “inverse A-weighting” filter is utilized. The basic idea of this filter is to account for the fact that our ears are less sensitive to particularly low and high frequencies. Since the drop off starts around 200 Hz, this affects a decent number of glitches. By increasing the loudness of these lower frequencies, we make it so that features of similar intensity in an omega scan are ideally heard equally loud, no matter their frequency.

Advertisements

About mzevin

I am a graduate student studying Physics and Astronomy at Northwestern University. I am part of the LIGO Scientific Collaboration and work with Dr. Vicky Kalogera studying gravitational wave astrophysics. In particular, I'm interested in binary evolution and using gravitational wave detections to determine the environments in which compact binary mergers occur. I received my B.S. from the University of Illinois in Astronomy, Physics, and Music. Outside of school I enjoy teaching science at Chicago’s Adler Planetarium and Kids Science Labs, playing music around the Windy City, and looking up.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: